3.17.53 \(\int \frac {(d+e x)^3}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=54 \[ -\frac {2 (d+e x)^3}{3 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {650} \begin {gather*} -\frac {2 (d+e x)^3}{3 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^3/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^3)/(3*(c*d^2 - a*e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))

Rule 650

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((p + 1)*(2*c*d - b*e)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
 EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^3}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac {2 (d+e x)^3}{3 \left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 46, normalized size = 0.85 \begin {gather*} -\frac {2 ((d+e x) (a e+c d x))^{3/2}}{3 \left (c d^2-a e^2\right ) (a e+c d x)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^3/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*((a*e + c*d*x)*(d + e*x))^(3/2))/(3*(c*d^2 - a*e^2)*(a*e + c*d*x)^3)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.95, size = 62, normalized size = 1.15 \begin {gather*} \frac {2 (d+e x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \left (a e^2-c d^2\right ) (a e+c d x)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(d + e*x)^3/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(2*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*(-(c*d^2) + a*e^2)*(a*e + c*d*x)^2)

________________________________________________________________________________________

fricas [B]  time = 0.83, size = 103, normalized size = 1.91 \begin {gather*} -\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (e x + d\right )}}{3 \, {\left (a^{2} c d^{2} e^{2} - a^{3} e^{4} + {\left (c^{3} d^{4} - a c^{2} d^{2} e^{2}\right )} x^{2} + 2 \, {\left (a c^{2} d^{3} e - a^{2} c d e^{3}\right )} x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

-2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(e*x + d)/(a^2*c*d^2*e^2 - a^3*e^4 + (c^3*d^4 - a*c^2*d^2*e^2
)*x^2 + 2*(a*c^2*d^3*e - a^2*c*d*e^3)*x)

________________________________________________________________________________________

giac [B]  time = 0.64, size = 409, normalized size = 7.57 \begin {gather*} -\frac {2 \, {\left ({\left ({\left (\frac {{\left (c^{3} d^{6} e^{3} - 3 \, a c^{2} d^{4} e^{5} + 3 \, a^{2} c d^{2} e^{7} - a^{3} e^{9}\right )} x}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}} + \frac {3 \, {\left (c^{3} d^{7} e^{2} - 3 \, a c^{2} d^{5} e^{4} + 3 \, a^{2} c d^{3} e^{6} - a^{3} d e^{8}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x + \frac {3 \, {\left (c^{3} d^{8} e - 3 \, a c^{2} d^{6} e^{3} + 3 \, a^{2} c d^{4} e^{5} - a^{3} d^{2} e^{7}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x + \frac {c^{3} d^{9} - 3 \, a c^{2} d^{7} e^{2} + 3 \, a^{2} c d^{5} e^{4} - a^{3} d^{3} e^{6}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )}}{3 \, {\left (c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

-2/3*((((c^3*d^6*e^3 - 3*a*c^2*d^4*e^5 + 3*a^2*c*d^2*e^7 - a^3*e^9)*x/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d
^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8) + 3*(c^3*d^7*e^2 - 3*a*c^2*d^5*e^4 + 3*a^2*c*d^3*e^6 - a^3*d*e^8)/(c^4*d^8
 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))*x + 3*(c^3*d^8*e - 3*a*c^2*d^6*e^3 + 3*a^
2*c*d^4*e^5 - a^3*d^2*e^7)/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))*x + (c
^3*d^9 - 3*a*c^2*d^7*e^2 + 3*a^2*c*d^5*e^4 - a^3*d^3*e^6)/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a
^3*c*d^2*e^6 + a^4*e^8))/(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 58, normalized size = 1.07 \begin {gather*} \frac {2 \left (c d x +a e \right ) \left (e x +d \right )^{4}}{3 \left (a \,e^{2}-c \,d^{2}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(5/2),x)

[Out]

2/3*(c*d*x+a*e)*(e*x+d)^4/(a*e^2-c*d^2)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(5/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more details)Is a*e^2-c*d^2 zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 1.43, size = 58, normalized size = 1.07 \begin {gather*} \frac {2\,\left (d+e\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{3\,{\left (a\,e+c\,d\,x\right )}^2\,\left (a\,e^2-c\,d^2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^3/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2),x)

[Out]

(2*(d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(3*(a*e + c*d*x)^2*(a*e^2 - c*d^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x\right )^{3}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Integral((d + e*x)**3/((d + e*x)*(a*e + c*d*x))**(5/2), x)

________________________________________________________________________________________